
1

IPN Progress Report 42-209   •   May 15, 2017

A New Geometric Trilateration Scheme  
for GPS-Style Localization

Kar-Ming Cheung* and Charles Lee*

* Communications Architectures and Research Section.

1 GPS satellites, and we assume Si’s, are all time-synchronized.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of  
Technology, under a contract with the National Aeronautics and Space Administration. © 2017 California Institute  
of Technology. U.S. Government sponsorship acknowledged.

abstract. — In this article, we introduce a new trilateration method for GPS-style localiza-
tion. We show by simulations that the localization accuracy of the new method is indis-
tinguishable from that of the traditional GPS approach. On the user segment side, the new 
scheme is computationally more efficient. This has the potential to translate into lower 
cost, and to enable faster location acquisition in the more challenging and dynamic opera-
tion environments.  

I. Introduction

The United States’ Global Positioning System (GPS) infrastructure consists of 31 satellites [1] 
in medium Earth orbit (MEO) that provide 24/7 and global location and timing services for 
users on Earth’s surface and in low Earth orbit (LEO). The cost of development, deployment, 
and operation of GPS is estimated to be about $33 billion, and the annual operation and 
maintenance cost is about $1 billion [1].  

GPS provides three-dimensional (3-D) position estimates via trilateration, which refers to 
the general technique of computing position based on measurement of distances. The stan-
dard GPS trilateration scheme is expressed in terms of distance measurements and positions 
in an Earth-centered Cartesian coordinate system. The set of simultaneous equations is of 
the form
	

, ,x x z z i ny y c t d 1i ii i
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where ( , , )x y z  is the position of vehicle V  to be estimated, ( , , )x y zi i i  are known positions of 
the GPS satellite Si ,1 and n is the number of satellites; tD  is the clock bias between V and 
the GPS time standard, which is maintained by the GPS operation segments; and c is the 
speed of light. In the GPS trilateration computation, ( , , )x y z  and c tD  can be solved uniquely 
for n $ 4.  The standard approach to solve Equation (1) is known as the Newton–Raphson 
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method, which is a general iterative method that uses linear regression to find the root of a 
function [2].  

In this article, we present a different trilateration framework and a new iterative method 
that is based on the Pythagorean theorem and solves the set of simultaneous equations for 
position estimation. The scheme differs from the traditional GPS trilateration scheme in the 
following manner:  

(1)	 The current GPS approach (Newton–Raphson method) uses the absolute locations 

( , , )x y zi i i ’s of the GPS satellites as input to each step of the localization computa-
tion. The new method uses the directional cosines iU ’s from Earth’s center to the 
GPS satellite Si.  

(2)	 Both the Newton–Raphson method and the new method iterate to converge to a 
localized solution. In each iteration step, multiple computation-intensive matrix 
operations are performed. The Newton–Raphson method constructs a different 
matrix in each iterative step, and thus requires performing a new set of matrix 
operations in each step. The new scheme uses the same matrix in each iteration, 
and thus requires computing the matrix operations only once for all subsequent 
iterations.  

In a later section, we show by simulations that for the same GPS ephemeris errors and 
pseudorange measurement errors, the localization performance of the new scheme is  
indistinguishable from that of the Newton–Raphson method.  

On the user segment side, the new scheme provides a clear computation advantage. It 
requires only one set of matrix calculations for all iterations to converge to a localized solu-
tion, whereas the Newton–Raphson method performs a different set of matrix calculations 
per iteration. This has the potential to translate into lower cost, and to enable faster loca-
tion acquisition in the more challenging and dynamic operation environments.  

Using a similar problem formulation, we show that the new trilateration scheme can be 
used for relative positioning between aircraft or spacecraft separated by hundreds of kilo-
meters, and still deliver meter-level accuracy. This enables precision formation flying. The 
results can be found in [3]. Surprisingly, the trilateration scheme for GPS-style absolute po-
sitioning executes the same computation procedures as those for relative positioning. Only 
the inputs to the algorithm are different. Thus, the same software or hardware implementa-
tion can be used for both applications.  

The rest of the article is organized as follows: Section II outlines the traditional Newton–
Raphson method for GPS trilateration position determination. Section III takes into ac-
count the clock bias between a vehicle and the GPS satellite constellation, and derives the 
localization method using pseudorange measurements from four or more GPS satellites. 
Section III also discusses the computation advantage of the new method, and compares the 
root-mean-square error (RMSE) performances with the Newton–Raphson method under 
different combinations of GPS ephemeris errors and pseudorange measurement errors. Sec-
tion IV provides concluding remarks.  



3

II. A Brief Outline of the Newton–Raphson Method for GPS Localization

The Newton–Raphson iterative method and its convergence are based on the approach of 
linear regression. Let ( , , )P x y z=v u u u  be the estimated location for a given iteration. A residual 
location ( , ),P x y zD D DD=v , and an estimated clock offset c tD D=  are computed by solving 
the following equation:  

P G G GT dT 1
D =

-
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for .n 4$ .  

The matrix G  is of the form
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The estimated location ( , , )x y zu u u  is then updated as ( , , ) ( , , ) ( , , )x y z x y z x y z"D D D+u u u u u u . Note that

(1)	 The matrix G is constructed using the GPS satellite locations ( , , )x y zi i i  as well as the 
estimated location ( , , )x y zu u u  of P for a given iteration.  

(2)	 The first three entries of row i  in G correspond to the unit vector from the inter-
mediate location ( , , )x y zu u u  of each iterative step to the GPS satellite Si.   

(3)	 The estimated location ( , , )x y zu u u  is different in each iterative step, thus the matrix G 
is different, and the complicated computation of ( )G G GT T1-  has to be performed 
in each step. 

The details of this method can be found in many GPS books, e.g., [1]. 
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III. The New Geometric Trilateration Scheme for Localization

In this section, we derive the new trilateration method and compare its performance with 
the Newton–Raphson scheme.  

A. Derivation of Iterative Algorithm

Let E denote the center of Earth with coordinates ( , , )0 0 0 . Consider three points V ,  
E, and S1 that form a triangle 1/  in the Euclidean space, as shown in Figure 1. Let r1 be  
the range between E and S1, and r1l be the pseudorange measurements between V  and  
S1. We consider the presence of the clock bias tD  between the vehicle V and the GPS 
satellites Si’s, i n1 # # . We assume that the clocks of the GPS satellites are perfectly syn-
chronized. We express the unknown clock bias of the vehicle V  with respect to S1 as an 
unknown correction factor c tD D=  in the pseudorange measurements r1l. The same cor-
rection factor D occurs in all other pseudorange measurements ril, i n1 # # . The problem 
formulation of this case is illustrated in Figure 1.  
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Figure 1. Geometry of the problem formulation.
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be the directional cosine of S1
v , i.e., the unit vector from E to S1. Let s1 be the altitude of 1/  

through V. Denote the projection of Pv  onto S1
v  to be d1, which can be expressed as the dot 
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product between U1
v  and Pv  (denoted by U P1 %

v v ). Note that 1/  is made up of two right-angled 
triangles that share a common side s1, where s1 #

vP . Similarly, for each GPS satellite Si, 
we form a triangle i/ .  

We construct the following relationships by applying the Pythagorean theorem on the two 
right-angled triangles of i/  in Figure 1: 

si
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such that 

.P dA
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Equation (3) forms an iterative relationship with Equations (2a) and (2b). In general, when 
there are n anchors, where n 4$ , one can form additional Pythagorean relationships, as 
shown in the above equations, and compute the least-mean-square solution of an overde-
termined system as follows:  
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.P A A A dT T1
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-
l l l l lv v_ i

Based on the above formulation, we construct an iterative method that guarantees conver-
gence to the vector Plv  using the GPS satellite ranges of , ,r r rn1 2g  and pseudorange mea-
surements of , ,r r rn1 2 gl l l, where n 4$ . We outline the method for the case n 4= :  

Iterative Procedure

(1)	 Initialization:  

	 (a)		 Compute the directional cosines U1
v , U2
v , U3
v , and U4

v , and construct the  
		  matrix Al.   

	 (b)		 Set s s s s 01 2 3 4= = = = . 

	 (c)		 Set 0D = .   

	 (d)		 Compute M A 1= -l l  (or ( )M A A AT T1= -l l l l  for n 5$ ). 

(2)	 Compute d1, d2, d3, and d4 according to Equation (2b).  
  

(3)	 Compute P M d=l l lv v  according to Equation (3). 
  

(4)	 Compute s1
2, s2

2, s3
2, and s4

2 according to Equation (2a).  
  

(5)	 Go to 2, and compute Plv  until Plv  converges.   

Note that in the above iterative procedure, the matrix M l only needs to be computed once. 
We found that Plv  typically converges within five or six iterations in our simulation.  

In North America, over 99.9 percent of the time vehicles see 6 to 12 GPS satellites [1], and 
therefore the matrix Al is of the order of 6 to 12. In every iteration step of trilateration, the 
calculation of ( )A A AT T1-l l l  can be computationally intensive, and the convergence is a 
serial process that cannot be parallelized. Unlike the Newton–Raphson method that forms 
a different matrix G in each iterative step (see Section II), the proposed scheme forms a 
constant matrix Al that consists of directional cosines of the GPS satellites in view. Thus, 
the term ( )A A AT T1-l l l  only needs to be computed once, and remains the same in each 
subsequent iteration.  

B. Positioning Performance Simulations and Comparison

We consider a scenario of a vehicle V  on Earth’s surface, which is tracked by four GPS satel-
lites at MEO. The positions of the vehicle and the satellites are specified in Table 1. 

(4)
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We compute the RMSE performance of the new trilateration method derived in Sec-
tion III.A, and compare with that of the Newton–Raphson scheme under the following 
simulation setup:  

(1)	 The GPS is a highly calibrated system. The current GPS ephemeris errors are 
bounded to within 2 to 3 m (RMS).2 We considered the cases with 3-D GPS 
ephemeris errors (RMS) of 0.0 m, 0.5 m, 1.0 m, 2.0 m, 5.0 m, 10.0 m, 30.0 m, and 
35.0 m.  

(2)	 For the GPS range measurement ri  and the pseudorange measurement r1l,
3 

i n1 # # , we add independent random errors of Gaussian distribution with zero 
mean and standard deviation of 0.0 mm, 1.0 mm, 2.5 mm, 5.0 mm, 1.0 cm, 
2.0 cm, and 5.0 cm.  

(3)	 We consider the cases of no media error (atmospheric delay).  

(4)	 We perform 10,000 simulations for each combination of GPS ephemeris errors and 
pseudorange measurement errors, and compute the RMSE performance in each 
case.  

The RMS localization error performance (in centimeters) of the new method and the 
Newton–Raphson scheme are shown in Tables 2 and 3, respectively. They are almost  
indistinguishable.  

IV. Conclusion

In this article, we introduce a new trilateration scheme for GPS-style 3-D positioning that 
is based on the Pythagorean theorem rather than the Newton–Raphson linear regression 
method. We show by simulations that the localization accuracy of the new approach is 
almost indistinguishable from that of the Newton–Raphson scheme for the same combina-
tion of GPS ephemeris errors and pseudorange measurement errors. 
 
On the user segment side, the new scheme provides a clear computation advantage. It 
requires only one set of matrix calculations for all iterations to provide a localized solution, 
whereas the Newton–Raphson method performs a different set of matrix calculations per 

2 See https://en.wikipedia.org/wiki/Error_analysis_for_the_Global_Positioning_System.

3 In practice, the GPS satellites are well-calibrated; the GPS satellite Si’s range measurement ri has much fewer random 
measurement errors compared to those of the vehicle’s pseudorange measurements ri

l. However, in this article, for the 
sake of comparing the new scheme with the Newton–Raphson method, we use the same random error statistics for both 
ri  and ri

l.  

Table 1. Positions of user vehicle on Earth’s surface and the GPS satellites.

Vehicle/
Satellite

Longitude,  
deg due east

Latitude, 
deg

Altitude, 
km

	 Surface Vehicle	 280.3433	           0	 0

	 GPS Satellite 1	 243.1105	 35.4259	 20200

	 GPS Satellite 2	 253.6700	 32.6300	 20200

	 GPS Satellite 3	 290.6021	 –35.7773	 20200

	 GPS Satellite 4	 307.1953	 5.2514	 20200

http://en.wikipedia.org/wiki/Error_analysis_for_the_Global_Positioning_System
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iteration. This opens up the opportunities for lower implementation cost, and enables new 
applications that require faster location acquisition in the more challenging and dynamic 
operation environments.  

Another advantage of this new GPS-style trilateration scheme discussed in this article is 
that it executes the same computation procedures as the trilateration scheme for relative 
positioning [3]; only the inputs to the algorithm are different. Thus, the same software or 
hardware implementation can be used for both absolute positioning and relative position-
ing applications.  
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Pseudorange 

Error, cm

Table 2. RMS localization error, in centimeters, of our proposed scheme.

0 m

	 0	 0.00	 115.45	 231.59	 459.94	 1151.88	 2306.75	 6905.59	 8030.99

	 0.10	 1.88	 116.01	 228.51	 463.12	 1151.62	 2293.96	 6963.31	 8053.13

	 0.25	 4.63	 115.35	 230.68	 461.79	 1144.89	 2303.23	 6857.16	 8079.36

	 0.50	 9.28	 115.90	 231.00	 460.80	 1155.96	 2299.06	 6884.14	 8109.05

	 1.00	 18.64	 116.39	 231.14	 457.64	 1151.45	 2292.72	 6908.46	 8052.74

	 2.00	 37.11	 120.61	 233.60	 465.27	 1156.76	 2318.15	 6939.10	 8086.46

	 5.00	 93.41	 147.56	 247.40	 470.02	 1167.13	 2320.61	 6920.64	 8106.20

GPS Satellite Position Error

0.5 m 1 m 2 m 5 m 10 m 30 m 35 m

  
Pseudorange 

Error, cm

Table 3. RMS localization error, in centimeters, of the Newton–Raphson scheme (traditional GPS scheme).

0 m

	 0	 0.00	 115.38	 231.21	 458.45	 1148.60	 2298.68	 6911.34	 8050.98

	 0.10	 1.88	 115.59	 229.82	 461.27	 1147.69	 2301.32	 6904.79	 8084.02

	 0.25	 4.67	 115.32	 228.56	 458.70	 1152.21	 2287.62	 6908.94	 8056.46

	 0.50	 9.34	 115.73	 231.56	 461.98	 1150.70	 2312.89	 6979.49	 8135.06

	 1.00	 18.55	 114.91	 231.51	 458.36	 1157.32	 2295.37	 6916.55	 8066.98

	 2.00	 37.56	 121.62	 233.89	 458.97	 1143.87	 2310.88	 6919.93	 8066.90

	 5.00	 92.50	 148.73	 249.23	 470.51	 1161.83	 2305.15	 6882.36	 8105.19

GPS Satellite Position Error

0.5 m 1 m 2 m 5 m 10 m 30 m 35 m



9

References

[1]	 P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance, 
2nd Edition, Ganga-Jamuna Press, 2012.  

[2]	 B. Kumar, “Determination of GPS Receiver Position Using Multivariate Newton–Raph-
son Technique for Over Specified Cases,” International Journal of Applied Engineering 

Research, vol. 3, no. 11, pp. 1457–1460, 2008.

[3]	 K. Cheung and C. Lee, “A Trilateration Scheme for Relative Positioning,” presented at 
IEEE Aerospace Conference, Big Sky, Montana, March 4–11, 2017.  

JPL CL#17-1671


